
Access Manager 4.5
OAuth Application Developer Guide

April 2019

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

Copyright © 2019 NetIQ Corporation, a Micro Focus company. All rights reserved.

License Grant Licenses purchased for PlateSpin Forge 11 or later versions cannot be used for PlateSpin Forge 3.3 or prior
versions.
2

https://www.microfocus.com/about/legal/

Contents
About This Guide 5

1 Getting Started 7

2 Steps to Create an OAuth Client Application 9
2.1 Selecting the Authorization Grant Type . 9
2.2 Registering the OAuth Client Application . 10

2.2.1 Requirements . 10
2.2.2 Registering the OAuth Client Application . 10

2.3 Building an OAuth Client . 11
2.3.1 Authorization Code. 12
2.3.2 Authorization Code with PKCE. 16
2.3.3 Implicit. 19
2.3.4 Resource Owner . 21
2.3.5 Client Credentials . 24
2.3.6 Security Assertion Markup Language (SAML) 2.0 Bearer Grant . 26

2.4 Accessing Protected APIs . 27
2.4.1 Sample API request with access token using curl . 28

2.5 Managing Tokens . 28
2.5.1 Using Refresh Token . 28
2.5.2 Revoking Tokens . 29
2.5.3 Revoking Token Issued to a Device . 30
2.5.4 Validating a JWT Token. 31

3 Customizing the Access Token 35
3.1 Adding Attributes to Token . 35
3.2 Creating Custom Resource Server . 35
3.3 Creating Custom OAuth2 Scope . 35

4 Available Endpoints 37
4.1 Registration Endpoint . 37
4.2 Metadata Endpoint . 41
4.3 Authorization Endpoint . 43

4.3.1 Request Parameters . 43
4.3.2 Response Values . 45

4.4 Token Endpoint . 45
4.4.1 Request Parameters . 46
4.4.2 Response Values . 46

4.5 TokenInfo Endpoint (Deprecated). 47
4.5.1 Request Parameters . 47
4.5.2 Response Parameters . 47

4.6 Token Introspect Endpoint . 48
4.6.1 Request Headers. 48
4.6.2 Request Parameters . 48
Contents 3

4 Con
4.6.3 Response Values . 49
4.7 UserInfo Endpoint . 50

4.7.1 Request Parameters . 50
4.7.2 Response Values . 50
4.7.3 Sample Request and Response . 50

4.8 Revocation Endpoint . 51
4.8.1 Request Parameters . 51
4.8.2 Response Values . 51

5 Developer Resources 53
5.1 APIs in Action . 53

5.1.1 Try Now . 53
5.2 Access Manager OAuth Playground . 55
tents

About This Guide

The Developer Guide for OAuth Applications includes the information to help you build an OAuth-
based application with Access Manager as the authorizing server.

Intended Audience
This book is intended for the OAuth application developers, who are creating an OAuth application
using Access Manager as the authorization server. It is assumed that you have the basic knowledge
of OAuth and its authorization flows.

Other Information in the Library
You can access other information resources in the library at the following locations:

Access Manager Product Documentation (https://www.netiq.com/documentation/access-manager/
index.html)

Access Manager Developer Resources (https://www.netiq.com/documentation/access-manager-45-
developer-documentation/)

NOTE: Contact namsdk@microfocus.com for any query related to Access Manager SDK.
About This Guide 5

https://www.netiq.com/documentation/access-manager/index.html
https://www.netiq.com/documentation/access-manager-45-developer-documentation/

6 About This Guide

1 1Getting Started

In the OAuth authorization flows, the following are the OAuth 2 defined participants:

 Resource Owner: a user who owns the resource.
 Resource Server: a server that provides APIs to access user data and perform user functions.
 Authorization Server: a server that protects the resource server APIs.

Here, the authorization server is NetIQ Access Manager.
 Client: an application that requires to access the protected data on the resource server.

The simplified interaction between these participants is illustrated in the following figure:

API
Invoke Access with

token

Authoriza�on
Server

NetIQ Access
Manager

Resource Owner
(User)

Get token

Resource ServerOAuth Client
Service with API
Getting Started 7

8 Getting Started

2 2Steps to Create an OAuth Client
Application

The following image displays the basic steps required to build an OAuth client that can access the
protected APIs:

 Section 2.1, “Selecting the Authorization Grant Type,” on page 9
 Section 2.2, “Registering the OAuth Client Application,” on page 10
 Section 2.3, “Building an OAuth Client,” on page 11
 Section 2.4, “Accessing Protected APIs,” on page 27
 Section 2.5, “Managing Tokens,” on page 28

2.1 Selecting the Authorization Grant Type
The tokens (access, refresh, and ID tokens) are the key to use OAuth 2.0 and OpenID Connect.

The OAuth protocol provides different ways to obtain these tokens. You can use the appropriate
authorization grant type based on the business requirements.

Select Register Build Access Manage

Select the
authoriza�on
grant type
appropriate for
your scenario.

Register your
OAuth client with
NetIQ Acess
Manager.

Build the OAuth
client. Use the selected
authoriza�on flow to
get the OAuth tokens.

Access the protected
APIs using the access
token.

Manage access token,
refresh the token and
revoke the tokens as
required.

Authorization Grant Type of Application

Authorization Code Server-side Applications

Authorization Code with PKCE Native applications

Implicit  Single page applications, where navigation between different
screens of the website can be performed without loading
different webpage in the browser. For example, Gmail.

 Applications that run on the user's device such as, mobile apps
 Web applications that do not require high security

Resource Owner Password
Credentials

 Highly trusted applications or the applications that are owned by
the service itself, such as a mobile application

 Legacy application migrating to OAuth

Client Credentials  Headless clients
 Batch processing scripts
Steps to Create an OAuth Client Application 9

2.2 Registering the OAuth Client Application
Access Manager issues token to the confidential clients. To get the token, you must register the
OAuth client application with Access Manager Identity Server (authorization server).

 Section 2.2.1, “Requirements,” on page 10
 Section 2.2.2, “Registering the OAuth Client Application,” on page 10

2.2.1 Requirements
To register, ensure that you have the information about the following requirements:

 A valid account is created in the Access Manager Identity Server (authorization server).
 The account is enabled with the OAuth developer role.
 (Conditional)

If you require Identity Server to issue the refresh token, you must inform the Access Manager
administrator to enable the Refresh Token option in the OAuth global settings.
If the administrator has not enabled the Refresh Token option in the OAuth Global Settings,
Identity Server will not issue the refresh token even when you register the application using the
token type as refresh token.

NOTE: Refresh tokens are issued for authorization code flow and resource owner flow.

 The credentials to access the user portal of Access Manager.
To get the credentials, check with the Access Manager administrator. Also, get the URL and port
of the Access Manager Identity Server to log in to the user portal.
The following URL is a sample URL that you will get from the administrator:
https://<IDPServer>:<port>

 The client application redirection URIs, where Identity Server can send the tokens.

NOTE: The urn:ietf:wg:oauth:2.0:oob redirect URI is supported for only authorization
code flow.

Also, to get the endpoint details of Identity Server, see OAuth Metadata Endpoint.

2.2.2 Registering the OAuth Client Application
You can register the client application by using any one of the following options:

 Register the client application using the Access Manager user portal.
1. Log in to the Access Manager user portal.

SAML 2.0 Bearer Grant Applications that already have the SAML assertions and require to
access the OAuth protected resources.

Authorization Grant Type of Application
10 Steps to Create an OAuth Client Application

Sample URL: https://<IDPServer:port>/nidp/portal
2. Navigate to User > Administer OAuth Apps > Register New Client.
3. Specify the client configuration details.

For more information about each field, see the context sensitive help.

NOTE: Select Grants Required based on the OAuth flow that you have decided using the
first step, “Selecting the Authorization Grant Type” on page 9.

4. For refresh tokens, select Refresh Token in Token Types.
 Register using Rest API.

Send an API request to the registration endpoint (https://<Identity Server URL: Port
Number>/nidp/oauth/nam/clients) and include the following required OAuth
parameters:
 client_name: Name of the application
 redirect_uris: Redirection URI values

 The value, urn:ietf:wg:oauth:2.0:oob is supported only for authorization code flow.
 grant_types: select the grant types based on the OAuth flow that you have decided.

The grant_type can be refresh_token when using authorization code flow or resource
owner flow.

For more information about sending request to the registration endpoint, see Section 4.1,
“Registration Endpoint,” on page 37.

After the registration is successful, you will receive the client id and the client secret, using this you
can initiate the OAuth flow.

2.3 Building an OAuth Client
The OAuth client uses APIs to retrieve, manage and use the access tokens for accessing the OAuth
protected resource. The steps for these operations may vary depending on the selected OAuth
authorization grant type.

This section includes steps for implementing the following OAuth flows:

 Section 2.3.1, “Authorization Code,” on page 12
 Section 2.3.2, “Authorization Code with PKCE,” on page 16
 Section 2.3.3, “Implicit,” on page 19
 Section 2.3.4, “Resource Owner,” on page 21
 Section 2.3.5, “Client Credentials,” on page 24
 Section 2.3.6, “Security Assertion Markup Language (SAML) 2.0 Bearer Grant,” on page 26
Steps to Create an OAuth Client Application 11

2.3.1 Authorization Code

 Section 2.3.1.1, “Register the Client Application,” on page 12
 Section 2.3.1.2, “Request for Authorization Code,” on page 12
 Section 2.3.1.3, “User Authenticates and Authorizes the Client Application,” on page 13
 Section 2.3.1.4, “Client Receives the Authorization Code,” on page 13
 Section 2.3.1.5, “Get Access Token,” on page 14

2.3.1.1 Register the Client Application
If you have not registered the client application, register it and ensure that the grant type is
authorization code.

Using user portal page: Set Grants Required field as Authorization Code

Using REST API: Specify the value of grant_types parameter as authorization_code
After registering the client application you must save the client ID and the secret securely.

2.3.1.2 Request for Authorization Code
To get the authorization code, send an HTTPS GET request to the Authorization Endpoint with the
appropriate query parameters.

NOTE: HTTP connections are denied. Therefore, use HTTPS.

Resource Server

Service with API

API

3

7

4 2, 5
8

6
1. Register to obtain Client ID and Client Secret.
2. Request to obtain the authoriza�on code.
3. Log in and provide consent.
4. Authoriza�on code received.
5. Send Client ID, Client Secret and authoriza�on code.
6. Receive the access token and the refresh token.
7. Access with token.
8. Validate the token.

NetIQ Access
Manager

OAuth Client

Resource Owner
(User)
12 Steps to Create an OAuth Client Application

Sample request:
https://<idphost:port>/nidp/oauth/nam/
authz?response_type=code&client_id=bb775b12-bbd4-423b-83d9-
647aeb98608d&redirect_uri=https://client.oauth.com/
callback&scope=profile+email&nonce=ab8932b6&state=AB32623HS

The preceding table lists the minimal set of parameters. For the complete list of parameters, see
Section 4.3, “Authorization Endpoint,” on page 43.

NOTE: The authorization code flow does not support the basic authorization header in an
authorization request. However, this flow supports the basic authorization header in an access token
request.

2.3.1.3 User Authenticates and Authorizes the Client Application
Access Manager Identity Server prompts the user to log in if not already logged in. After a successful
login, the user is redirected to the consent screen to authorize the application. The consent screen
can include permissions that require user authorization.

2.3.1.4 Client Receives the Authorization Code
The Identity Server responds with an HTTP 302 redirect message leading to the redirect_uri specified
in the authorization request. If the request does not contain the redirect_uri parameter, Identity
Server will redirect to one of the registered redirect_uri.

Request Parameter Description

client_id Client application ID obtained during client registration.

response_type Set it to "code", to indicate Authorization Code flow. OpenID Connect
Hybrid flow is supported. The supported response_type values are
“none”, "code", "code id_token", "code token" and "code id_token
token".

redirect_uri Access Manager will redirect with the authorization code only to URIs
specified during registration. Specify this parameter if you have pre-
registered multiple redirect URIs and want to select the specific one to
redirect to. Ensure that this exactly matches one of the pre-registered
URI.

If not specified, it defaults to any one of the registered URIs.

nonce String value used to associate a Client session with an ID Token, and to
mitigate replay attacks.

This is required when you have specified the response_type as id_token
or you have sent the request with the token and id_token along with the
code.
Steps to Create an OAuth Client Application 13

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

Sample Response
Response HTTP/1.1 302 Found Cache-Control: no-cache, no-store, no-transform
Location: https://client.oauth.com/callback?
code=eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0Niwi......&scope=email

NOTE: If response_type=code id_token token, access token and ID token will be included in
the response.

2.3.1.5 Get Access Token
The code can be exchanged for tokens by sending an HTTPS POST request to the Token Endpoint
with the required parameters. The only supported web protocol is HTTPS.

NOTE: You can exchange an authorization code only once.

Sample Request
curl --request POST \--url https://<idphost:port> /nidp/oauth/nam/token \-
-header 'content-type: application/x-www-form-urlencoded' \--data
'grant_type=authorization_code&client_id=b017c96c-b16a-4d80-a5fa-
68f5050abc58&client_secret=ZDDwbuuWPdV_e5quAf7f0Jkg_iJJ7g&redirect_uri=htt
ps://client.oauth.com/
callback&code=eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIiwi.......'

Response Data Description

code An opaque JWT token. Variable length field. Application should not assume the size of
the code and should allocate sufficient space for reading the code.

state Contains the state parameter sent in the authentication request above

id_token Based on response_type sent in the request. If the response_type value is either “code
id_token”, “ code id_token token” then authorization server sends id_token.

access_token Based on response_type sent in the request. If the response_type value is either “code
token” or “code id_token token” then authorization server sends access token.

expires_in Based on response_type sent in the request. Expiration time of the code in seconds
since the response was generated.

Request Parameter Description

grant_type Set to "authorization_code"

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native applications
and is mandatory for web applications.

code Code received in the Authorization code flow

redirect_uri This should be same as the one sent during the authorization code request
14 Steps to Create an OAuth Client Application

The preceding table lists the minimal set of parameters. For the complete list of parameters, see
Section 4.4, “Token Endpoint,” on page 45.

Sample Response
{"access_token":
"eyJhbGciOiJSU0ExXzU......",
"token_type": "bearer","expires_in": 179,
"refresh_token": "eyJhbGcidHlwIjoiSldUIiwiemlwjo..........",
"scope": "email"}

NOTE: If there are validation errors, the JSON response returns HTTP Status 400 with additional
fields error and error_description.

Try Now
To view how the authorization code flow works, you can use the Access Manager OAuth sample
scripts. For more information about the sample scripts, see Chapter 5, “Developer Resources,” on
page 53.

Response Parameter Description

token_type Authorization server currently supports only "Bearer" token type

access_token Access token that can be used to invoke resource server APIs

id_token When invoking authorization code request, if the client has sent OpenID
in scope parameter, this response object will contain an ID Token. IDToken
is signed and encrypted based on the client's registration.

Scope The list of scopes that user has authorized. Hence this may not contain all
the scopes that the client requested.

State If the "state" parameter was present in the client authorization request,
the same state value is sent in response.
Steps to Create an OAuth Client Application 15

2.3.2 Authorization Code with PKCE

2.3.2.1 Register the Client Application
If you have not registered the client application, register it and the grant type must be authorization
code.

Using user portal page: Set Grants Required field as Authorization Code

Using REST API: Specify the value of grant_types parameter as authorization_code
After registering the client application you must save the client ID and the secret securely.

2.3.2.2 Request for Authorization Code with PKCE
Client sends the code challenge as part of the OAuth 2.0 Authorization request with following
additional parameters:

Sample request:
https://<<IDP>>:8443/nidp/oauth/nam/authz?code_challenge=WsEH2Rr4lWdciBEb
CuHVlH_UIBUGFPRbDXcPsbPl74&code_challenge_method=S256&scope=profile&respon
se_type=code&redirect_uri=<<Redirect_URI>>&client_id=484fd33f-12b0-44c4-
bbf5-82bae803b71d

Resource Server

Service with API

API

3

7

4 2, 5
8

61. Register to obtain Client ID and Client Secret.
2. Request to obtain the authoriza�on code with
 a code challenge method.

3. Log in and provide consent.
4. Authoriza�on code received.
5. Send Client ID, Client Secret and authoriza�on code
 with code_verifier.
6. Receive the access token and the refresh token.
7. Access with token.
8. Validate the token.

NetIQ Access
Manager

OAuth Client

Resource Owner
(User)

Request Parameter Description

code_challenge Specify the code challenge parameter to initiate the PKCE flow.

code_challenge_method This is an optional parameter. The default value is plain.

You can specify the value as plain or S256.
16 Steps to Create an OAuth Client Application

The preceding table lists the minimal set of parameters. For the complete list of parameters, see
Section 4.3, “Authorization Endpoint,” on page 43.

2.3.2.3 User Authenticates and Authorizes the Client Application
Access Manager Identity Server prompts the user to log in if not already logged in. After a successful
login, the user is redirected to the consent screen to authorize the application. The consent screen
can include permissions that require user authorization.

2.3.2.4 Client Receives the Authorization Code
The Identity Server responds with an HTTP 302 redirect message to the redirect_uri specified in the
Authorization request. If the request does not contain redirect_uri parameter, the Identity Server
will redirect to one of the registered redirect_uri.

Sample Response
Response HTTP/1.1 302 Found Cache-Control: no-cache, no-store, no-transform
Location: https://client.oauth.com/callback?
code=eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0Niwi......&scope=email

NOTE: If you specify response_type=code id_token token, access token and ID token will be
included in the response.

2.3.2.5 Get Access Token
The code can be exchanged for tokens by sending an HTTPS POST request to Token Endpoint with
the required parameters. The token request must contain the code_verifier parameter. The only
supported web protocol is HTTPS.

NOTE: You can exchange an authorization code only once.

Response
Parameter

Description

code An opaque binary token. Variable length field. Application should not assume the size
of the code and should allocate sufficient space for reading the code.

state Contains the state parameter sent in the authentication request above

id_token Based on response_type sent in the request. If the response_type value is either
code id_token, code id_token token then authorization server sends ID
token.

access_token Based on response_type sent in the request. If the response_type value is either
code id_token, code id_token token, then authorization server sends access
token.

expires_in Based on response_type sent in the request. Expiration time of the access token in
seconds since the response was generated.
Steps to Create an OAuth Client Application 17

Sample Request
curl --request POST \--url https://<idphost:port> /nidp/oauth/nam/token \-
-header 'content-type: application/x-www-form-urlencoded' \--data
'grant_type=authorization_code&redirect_uri=<Redirect_URI>&client_id=484fd
33f-12b0-44c4-bbf5-
82bae803b71d&code_verifier=0ak1mD3loHOy1ZksmyoO1fQEhRBEuzGYbkQqKFe1N
y0'

The preceding table lists the minimal set of parameters. For information about the complete list of
parameters, see Section 4.4, “Token Endpoint,” on page 45.

Sample Response
{"access_token":
"eyJhbGciOiJSU0ExXzU......",
"token_type": "bearer","expires_in": 179,
"refresh_token": "eyJhbGcidHlwIjoiSldUIiwiemlwjo..........",
"scope": "email"}

Request Parameter Description

grant_type Set to "authorization_code"

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native applications
and is mandatory for web applications.

code Code received in the Authorization code flow

redirect_uri This should be same as the one sent during the authorization code request

code_verifier Code verifier parameter is required if authorization code is requested using
the PKCE flow.

The server verifies code_verifier before returning the token.

Response Parameter Description

token_type Authorization server currently supports only "Bearer" token type.

access_token Access token that can be used to invoke resource server APIs.

id_token When invoking authorization code request, if the client has sent OpenID
in scope parameter, this response object will contain an ID Token. IDToken
is signed and encrypted based on the client's registration.

Scope The list of scopes that user has authorized. Hence this may not contain all
the scopes that the client requested.

State If the "state" parameter was present in the client authorization request,
the same state value sends in response.
18 Steps to Create an OAuth Client Application

NOTE: If validation errors occurred, HTTP Status 400 is returned with additional fields "error" and
"error_description" in the JSON response.

Try Now
To view how the authorization code with PKCE flow works, you can use the Access Manager OAuth
sample script. For more information about the OAuth samples, see Chapter 5, “Developer
Resources,” on page 53.

2.3.3 Implicit

The implicit flow is the simplest to integrate but it is also considered as insecure because the access
token is sent in the browser request. To secure this token, Access Manager sends these tokens in the
fragment mode.

2.3.3.1 Register the Client Application
If you have not registered the client application, register it and the grant type must be implicit.

Using user portal page: Set Grants Required field as Implicit

Using REST API: Specify the value of grant_types parameter as implicit
After registering the client application you must save the client ID and the secret securely.

2.3.3.2 Application sends Implicit token request
To initiate the Implicit Grant flow, make an HTTPS GET request to the Authorization endpoint with
required parameters. The only supported web protocol is HTTPS.

Resource Server

Service with API

API

3

5

4 2
6

1. Register to obtain Client ID and Client Secret.
2. Implicit token request.
3. Log in and provide consent.
4. Receive the access token.
5. Access with token.
6. Validate token.

NetIQ Access
Manager

OAuth Client

Resource Owner
(User)
Steps to Create an OAuth Client Application 19

Sample Request
https://<idphost:port>/nidp/oauth/nam/
authz?response_type=token+id_token&client_id=4e4ae330-1215-4fc8-9aa7-
79df8325451c&redirect_uri=https://client.oauth.com/
callback&scope=profile+email+OpenID&state=s1234&nonce=n123

The preceding table lists the minimal set of parameters. For the complete list of parameters see,
Section 4.3.1, “Request Parameters,” on page 43.

NOTE: The Basic Authorization header is not supported for the implicit flow.

2.3.3.3 User Authenticates and Authorizes Application
Access Manager Identity Server prompts the user to log in if not already logged in. After a successful
login, the user is redirected to the consent screen to authorize the application. The consent screen
can include permissions that require user authorization.

2.3.3.4 Application receives token response
The Authorization Endpoint sends an HTTP 302 redirect response with token and/or id_token as
a fragment to the registered redirect_uri.

Sample Response
https://client.oauth.com/
callback#token_type=bearer&access_token=eyJraWQiOiI0MjgzNzQyNDYxMjE5OTM1O.
.....&expires_in=3600&id_token=eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJo&scope=ema
il&state=s1234

Request Parameter Description

client_id Client application ID obtained during client registration

response_type Set to 'token''. OpenID Connect Hybrid flow is supported. The supported
response_type are “none”, "token", "id_token", and "token id_token".

redirect_uri If provided, the value of this must exactly match one of URIs of the
registered application.

state An opaque value used by the client to maintain state between the request
and callback. The authorization server includes this value when the
response sends to the client. The parameter is used to prevent cross-site
forgery requests.

nonce String value used to associate a Client session with an ID Token. It is used to
mitigate replay attacks.

This is a mandatory parameter when the response_type includes
id_token.
20 Steps to Create an OAuth Client Application

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

NOTE: If validation errors occurred, HTTP Status 400 is returned with additional fields "error" and
"error_description" in the JSON response.

2.3.3.5 Try Now
To view how the implicit flow works, you can use the Access Manager OAuth samples. For more
information about the samples, see Chapter 5, “Developer Resources,” on page 53.

2.3.4 Resource Owner

Response Parameter Description

token_type The type of the token. Authorization server currently supports only Bearer type

access_token Based on response_type value sent in the request. If the response_type value is
either "token" or "token id_token" then authorization server returns access
token

id_token Based on response_type sent in the request. If the response_type value is either
"id_token" or "token id_token" then authorization server returns id_token.

scope The list of scopes that user has authorized. This can contain all the scopes the
client requested or lesser.

state if the "state" parameter was present in the client authorization request, the
same state value sends in response.

Resource Server

Service with API

API2 5

43
6

1. Register to obtain Client ID and Client Secret.
2. Log in.
3. Authen�ca�ng the user and the client.
4. Receive the access token and the refresh token.
5. Access with token.
6. Validate token.

NetIQ Access
Manager

OAuth Client
Resource Owner

(User)
Steps to Create an OAuth Client Application 21

2.3.4.1 Register the Client Application
If you have not registered the client application, register it and the grant type must be resource
owner credentials.

Using user portal page: Set Grants Required field as Resource Owner Credentials

Using REST API: Specify the value of grant_types parameter as password
After registering the client application you must save the client ID and the secret securely.

2.3.4.2 Application Requests for Access Token
The client application should collect the user credentials and make HTTPS POST request to the token
endpoint for an access token.

NOTE: The HTTP connections are refused, use HTTPS.

Sample CURL request
curl --request POST \
 --url https://<idphost:port>/nidp/oauth/nam/token \
 --header 'content-type: application/x-www-form-urlencoded' \
 --data 'grant_type=password&client_id=bb775b12-bbd4-423b-83d9-
647aeb98608d&client_secret=bBbE-
4mNO_kWWAnEeOL1CLTyuPhNLhHkTThArEckyrdLmRLn3GhnxjsKI2mEijCSlPjftxHod05dp-
uGs6wA&username=user1&password=pass@123&scope=email%20profile'

NOTE: The authentication is done by using client_id and client_secret in the request body
parameters (as mentioned in the preceding curl request), or send client credentials in basic
authorization header (as mentioned in RFC 6749 (https://tools.ietf.org/html/rfc6749?#section-
2.3.1)).

The preceding table lists the minimal set of parameters. For the complete list of parameters see,
Section 4.4.1, “Request Parameters,” on page 46.

Request Parameter Description

grant_type Value should be “password”

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native application, for web
application secret is mandatory.

username The user login name

password The user login password
22 Steps to Create an OAuth Client Application

https://tools.ietf.org/html/rfc6749?#section-2.3.1

2.3.4.3 Application Receives Access Token

Sample token response
{
"access_token":
"eyJraWQiOiI0MjgzNzQyNDYxMjE5OTM1ODU5OTYyODYwNzYyODAzMzEyNjI1MjUzMDQyMTk0N
DMiLCJ0.....",
"token_type" : "bearer",
"expires_in" : 3599,
"scope" : "profile email"
}

NOTE: If validation errors are occurred, HTTP Status 400 returned with the JSON response contains
“error” and “error_description”.

Try Now
To view how resource owner flow works, you can use the Access Manager OAuth samples. For more
information about the samples, see Chapter 5, “Developer Resources,” on page 53.

Response Parameter Description

token_type The type of the token. Authorization server currently supports only Bearer type

access_token Access token that can be used to invoke resource server APIs

expires_in The remaining lifetime of the access token.

scope Scopes requested.
Steps to Create an OAuth Client Application 23

2.3.5 Client Credentials

2.3.5.1 Register the Client Application
If you have not registered the client application, register it and the grant type must be client
credentials.

Using user portal page: Set Grants Required field as Client Credentials

Using REST API: Specify the value of grant_types parameter as client_credentials
After registering the client application you must save the client ID and the secret securely.

2.3.5.2 Get Access Token
To get access token make an HTTPS POST request to Token endpoint.

Sample Request
curl --request POST \
--url https://<idphost:port>/nidp/oauth/nam/token \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'grant_type=client_credentials&client_id=bb775b12-bbd4-423b-83d9-
647aeb98608d&client_secret=bBbE-
4mNO_kWWAnEeOL1CLTyuPhNLhHkTThArEckyrdLmRLn3GhnxjsKI2mEijCSlPjftxHod05dp-
uGs6wA&scope=read%20write'

NOTE: The authentication is done by using client_id and client_secret in the request body
parameters (as mentioned in the preceding curl request), or send client credentials in basic
authorization header (as mentioned in RFC 6749 (https://tools.ietf.org/html/rfc6749?#section-
2.3.1)).

Resource Server

Service with API

API4

2 3
5

1. Register to obtain Client ID and Client Secret.
2. Authen�cate using the client creden�als.
3. Receive the access token.
4. Access with token.
5. Validate token.

Authoriza�on
Server

Internal Processes

Resource Owner
(User)

Not Involved
24 Steps to Create an OAuth Client Application

https://tools.ietf.org/html/rfc6749?#section-2.3.1

Sample Response
{"access_token": "eyJraWQiOiI0MjgzNzQyNDYxDYwNzYyODAzMz
........","token_type" : "bearer","expires_in" : 3599,"scope" : "read
write"}

NOTE: If validation errors occurred, HTTP Status 400 is returned with additional fields "error" and
"error_description" in the JSON response.

2.3.5.3 Try Now
To view how the client credentials flow works, you can use the Access Manager OAuth samples. For
more information about the samples, see Chapter 5, “Developer Resources,” on page 53.

Request Parameter Description

grant_type Set to "client_credentials'"

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native application
and is mandatory for web applications.

scope List of scopes the application requires. The scope read and write are
custom scopes, For creating custom scopes, see Section 3.3, “Creating
Custom OAuth2 Scope,” on page 35.

Response Parameter Description

token_type Authorization server currently supports only "Bearer" token type

access_token Access token that can be used to invoke resource server APIs

expires_in The remaining lifetime of the access token.

scope Scopes requested.
Steps to Create an OAuth Client Application 25

2.3.6 Security Assertion Markup Language (SAML) 2.0 Bearer Grant

This flow requires trust relationship between Identity Providers and Service Provider. The Access
Manager administrator needs to configure the assertion issuer details in Administration Console.

2.3.6.1 Register the Client Application
If you have not registered the client application, register it and the grant type must be SAML 2.0
assertion.

Using user portal page: Set Grants Required field as SAML 2.0 Assertion

Using REST API: Specify the value of grant_types parameter as saml2_assertion
After registering the client application you must save the client ID and the secret securely.

2.3.6.2 Exchange SAML 2.0 Assertion for Access Token
The SAML 2.0 assertions can be exchanged for access token. The consent page will not be displayed
to the user for authorizing scopes. The access token will have only the scopes that are previously
approved by the user.

To get access token send an HTTPS POST request to the token endpoint.

NOTE: The HTTP connections are denied, use HTTPS.

Sample CURL request
curl --request POST \
 --url https://<idphost:port>/nidp/oauth/nam/token \
 --header 'content-type: application/x-www-form-urlencoded' \
 --data 'grant_type=urn:ietf:params:oauth:grant-type:saml2-
bearer&client_id=bb775b12-bbd4-423b-83d9-
647aeb98608d&assertion=MPHnbWxv01….SY2&scope=email%20profile'

Resource Owner
(User)

SAML2 Iden�ty Provider
(Iden�ty Server or

any third party)

Authoriza�on Server
(Iden�ty Server)

OAuth Protected
Resources

Enterprise Applica�on
(SAML SP)

1. Login

2. Redirect to IDP for SAML token

4. Exchange SAML2
Assertion for OAuth2 Token

3

5. OAuth Token

7. Grant acess after validation

6. Send token to access the resource
26 Steps to Create an OAuth Client Application

NOTE: The authentication is done by using client_id and client_secret in the request body
parameters (as mentioned in the preceding curl request), or send client credentials in basic
authorization header (as mentioned in RFC 6749 (https://tools.ietf.org/html/rfc6749?#section-
2.3.1)).

2.3.6.3 Application Receives Access Token

Sample token response
{
"access_token":
"eyJraWQiOiI0MjgzNzQyNDYxMjE5OTM1ODU5OTYyODYwNzYyODAzMzEyNjI1MjUzMDQyMTk0N
DMiLCJ0.....",
"token_type" : "bearer",
"expires_in" : 3599,
"scope" : "profile email"
}

NOTE: If validation errors are occurred, HTTP Status 400 returned with the JSON response contains
“error” and “error_description”.

2.4 Accessing Protected APIs
The client has to include the access token when invoking any OAuth protected API service. The API
server will validate this access token and authorize the incoming API requests based on the scopes
embedded in the access token. For information about validating the tokens, see Section 2.5.4,
“Validating a JWT Token,” on page 31.

Request Parameter Description

grant_type Value should be "urn:ietf:params:oauth:grant-type:saml2-bearer’"

client_id Client ID of the registered client

assertion A single base64url encoded SAML2.0 Assertion as value for this parameter.

client_secret Optional. The client secret value

scope List of scopes the application requires. Scope values should be space separated
with %20 or +

Response Parameter Description

access_token Access token that can be used to invoke resource server APIs

scope Requested scopes that are pre-approved by the user.

expires_in The remaining lifetime of the access token.

token_type The type of the token. Authorization server currently supports only Bearer type
Steps to Create an OAuth Client Application 27

https://tools.ietf.org/html/rfc6749?#section-2.3.1

2.4.1 Sample API request with access token using curl
 curl -X POST -H "Authorization: Bearer eyJhbGciOiJSU0ExXzU.....""https://
api.oauth.apiserver.com/v1/resource"

2.5 Managing Tokens
The administrator/developer can perform the following to manage the tokens:

 Section 2.5.1, “Using Refresh Token,” on page 28
 Section 2.5.2, “Revoking Tokens,” on page 29
 Section 2.5.3, “Revoking Token Issued to a Device,” on page 30
 Section 2.5.4, “Validating a JWT Token,” on page 31

2.5.1 Using Refresh Token
The access token has shorter lifetime. The refresh tokens have longer life time. Hence, to use access
token for a longer duration you can use the refresh token. When the original access token is expired
or going to expire, you can send a request with the refresh token to get a fresh access token. The
refresh token is useful in a scenario where an application does not require frequent usage of
authentication from user.

Identity Server issues refresh token for authorization code grant and resource owner grant.

NOTE: You can request for refresh token if the administrator has enabled the use of refresh token
and if you have registered the application with token type as refresh token. For more information
about registering the application, see Section 2.2, “Registering the OAuth Client Application,” on
page 10.

2.5.1.1 Requesting Access Token Using Refresh Token
The refresh token request should be sent to the Token Endpoint. The client application makes an
HTTPS POST request to the /token endpoint for getting a fresh access token by using the refresh
token.

Sample CURL request
curl --request POST \
--url https://<idphost:port>/nidp/oauth/nam/token \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'grant_type=refresh_token&client_id=4e4ae330-1215-4fc8-9aa7-
79df8325451c&client_secret=Rxl5pvgL80DBzbIcLPVnH17FehZA8L&refresh_token=ey
JraWQiOiI0MjgzNzQyNDYxMjE5OTM1.....'

Request Parameter Description

grant_type Value should be "refresh_token'"
28 Steps to Create an OAuth Client Application

For information about other request parameters, see Section 4.4, “Token Endpoint,” on page 45.

2.5.1.2 Receiving Access Token

Sample token response
{"access_token":
"eyJraWQiOiI0MjgzNzQyNDYxMjE5OTM1ODU5OTYyODYwNzYyODAzMzEyNjI1MjUzMDQyMTk0N
DMiLCJ0.....","token_type" : "bearer","expires_in" : 3599, "scope" :
"profile email"}

NOTE: If validation errors are occurred, HTTP Status 400 returned with the JSON response contains
"error" and "error_description".

2.5.2 Revoking Tokens
Prerequisite: Inform the Access Manager administrator to enable token revocation in the OAuth
global settings of Identity Server.

The client application can revoke the refresh token in the following scenarios:

 The end-user logs out
 The application is uninstalled
 To notify the Identity Server that a previously obtained refresh token is no longer required.

The refresh token received in earlier flows can be revoked by sending an HTTPS Post request to the
revocation endpoint, /revoke of Identity Server.

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native application, for web
application secret is mandatory.

refresh_token refresh_token that is obtained during authorization code, resource owner
credentials flow

Request Parameter Description

Response Parameter Description

token_type The type of the token. Authorization server currently supports only Bearer type

access_token Fresh access token that can be used to invoke resource server APIs

refresh_token Optionally re-issues a refresh token if configured in client application

expires_in The remaining lifetime of the access token.

scope The granted scopes to the client.
Steps to Create an OAuth Client Application 29

NOTE: Only the refresh tokens that are in JWT format can be revoked. Therefore, You can revoke
only the refresh tokens that are issued from Access Manager 4.4 or later versions.

2.5.2.1 Application Request to Revoke Refresh Token

Sample request
curl --request POST \
--url https://<idphost:port>/nidp/oauth/nam/revoke\
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=bb775b12-bbd4-423b-83d9-647aeb98608d&client_secret=bBbE-
4mNO_kWWAnEeOL1CLTyuPhNLhHkTThArEckyr&token=eyJraWQiOiI0MjgzNzQyNDYxMjE5OT
M1ODU5OTYyOD'

2.5.2.2 Application Receives Response for Revoking Refresh Token
 The Identity Server responds with HTTP status code 200 OK if the token has been revoked

successfully or if the client submitted an invalid token.
 The error code unsupported_token_type is returned by the Identity Server when the given

token is not a refresh token.
 If the Identity Server responds with HTTP status code 503, the client must assume the token still

exists and may retry revoking the refresh token after a reasonable delay.

2.5.3 Revoking Token Issued to a Device
You can ask the Access Manager administrator to revoke refresh tokens that are issued to a device.
This feature is helpful in following scenarios:

 If the device is stolen or user lost the device
 Token is given to user for multiple devices and one device is compromised.
 User revokes by revoking the consent.

When consent is removed, user is required to grant permission again to use the token.

The token can be manually associated with a device by providing additional parameter "device_id"
while requesting for access token. Such manually associated tokens can be revoked using the
revocation endpoint.

Request Parameter Description

client_id Client ID of the registered client

client_secret Client Secret of the registered client. It is optional for native application, for web
application secret is mandatory.

token refresh_token that is obtained during authorization grant, resource owner
credentials flow
30 Steps to Create an OAuth Client Application

2.5.3.1 Application Requests for Revoke Token issued to a Device
The client application makes HTTPS POST request to /revoke endpoint with device_id as path
parameter.

Sample CURL request
curl --request POST \
--url https://<idphost:port>/nidp/oauth/nam/revoke/<device_id>\
--header 'content-type: application/x-www-form-urlencoded' \
--data
'userstore_name=namsignboxuserstore&user_dn=cn%3Dharry%2Co%3Dnovell'

The request parameters that are used

2.5.3.2 Application Receives Response

Sample successful response
HTTP/1.1 200 OKCache-Control: no-cache, no-store, no-transformContent-Length: 0Date: Tue, 03
Mar 2015 18:12:55 GMT{"status": "Successfully revoked token(s) issued to this device."}

NOTE: If validation errors are occurred, HTTP Status 4xx returned with the JSON response contains
"error" and "error_description".

2.5.4 Validating a JWT Token
The tokens are validated based on the configuration of the resource server that is managed through
Access Manager Administration Console. To validate access tokens, you require to understand the
encryption method used for encrypting the access tokens.

By default token encryption is done by using Access Manager keys. To encrypt access token using
resource server keys share the encryption keys details in JWKS format (JSON Web Key Set) or JWKS
URI to Access Manager Administrator for creating custom resource server using either REST API or
Administration Console.

 Section 2.5.4.1, “Validating Tokens Encrypted Using the Access Manager keys,” on page 32
 Section 2.5.4.2, “Validating Tokens Encrypted Using Resource Server Keys,” on page 33
 Section 2.5.4.3, “Validating Unencrypted Tokens,” on page 33

Refresh tokens are always encrypted by using Access Manager Encryption keys.

Parameter Required Description

userstore_name Yes Specify the name of the user store

user_dn Yes Specify the user's dn to whom the token issued.
Steps to Create an OAuth Client Application 31

2.5.4.1 Validating Tokens Encrypted Using the Access Manager keys
To validate access tokens and refresh token that are signed and encrypted by using Access Manager
encrypted keys, send a request to TokenIntrospect endpoint, /introspect.

Sample request
The request should contain the token in the Authorization header as follows:

Authorization: Bearer access_token
curl --request POST \

--url https://<idphost:port>/nidp/oauth/v1/nam/introspect \
--header 'content-type: application/x-www-form-urlencoded;Authorization:
Bearer
eyJraWQiOiI0MjgzNzQyNDYxMjE5OTM1ODU5OTYyODYwNzYyODAzMzEyNjI1MjUzMDQyMTk0ND
MiLCJ0.... \'
--data 'token=eyJhbGciOiJBMT........._.xvpQmbtb-hzR6TAs3dOm7A

Sample response
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json
Content-Length: 296
Date: Thu, 19 Mar 2015 15:47:25 GMT
{
"active": true,"exp": 1536731362,"nbf": 1536727762,"iat":
1536727762,"scope": [],"token_type": "bearer","jti": "9b7d2252-cb1d-4e41-
9155-97fe2f3dc85a","iss": "https://<Identity Server hostname>/nidp/oauth/
nam","aud": "21ae0625-f319-4b24-bf52-b2fc7e2a866a","client_id": "21ae0625-
f319-4b24-bf52-b2fc7e2a866a"
}

The response will have the following parameters

NOTE: If validation errors are occurred, HTTP Status 400 returned with the JSON response contains
"error" and "error_description".

Parameter Description

active A boolean value indicating whether the mentioned token in the
introspection request is currently active.

client_id The client identifier for the OAuth 2.0 client that requested this token.

exp The timestamp in seconds indicating when the token will expire.
32 Steps to Create an OAuth Client Application

2.5.4.2 Validating Tokens Encrypted Using Resource Server Keys
When the access token is encrypted using the resource server keys, the resource server can validate
the token without contacting Access Manager's token verification endpoint.

A resource server can validate using the following sample code written in JAVA:

Sample Java code to validate a token
//Step1: decrypt the JWT Token (JWE Standard)
String jwtAccessToken =
"eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIiwidHlwIjoiSldUIiwia2lkIjoibmFtL
TEifQ.ZjE0jRb5oh3suQZHFmaB-m....";
JsonWebEncryption jwe = new JsonWebEncryption();
jwe.setCompactSerialization(jwtAccessToken);
JsonWebKeySet jsonWebKeySet = new JsonWebKeySet(jwks);
List<JsonWebKey> jsonWebKeys = jsonWebKeySet.getJsonWebKeys();
JsonWebKey jsonWebkey = jsonWebKeys.stream().filter(p -
>p.getKeyId().equalsIgnoreCase(jwe.getKeyIdHeaderValue())).findFirst().orE
lse(jsonWebKeys.get(0));
if(jsonWebkey instanceof RsaJsonWebKey){RsaJsonWebKey rsa =
(RsaJsonWebKey) jsonWebkey;
jwe.setKey(rsa.getPrivateKey());
}
else
{
jwe.setKey(jsonWebkey.getKey());
}String decryptedToken = jwe.getPlaintextString();
//Step 2: Verify the JWT Signature (JWS Standard)JsonWebKeySet
jsonWebKeySet = new JsonWebKeySet(jwks);JsonWebKey jsonWebkey =
jsonWebKeySet.getJsonWebKeys().get(0);JsonWebSignature jws = new
JsonWebSignature();
jws.setKey(jsonWebkey.getKey());
jws.setCompactSerialization(decryptedToken);
if(true == jws.verifySignature()){System.out.println("Signature is
valid.");String payload = jws.getPayload();
//}
For detailed sample code and tool for validating the JWT access token, refer JWT Validation tool and
Readme under Additional Resources of Access Manager documentation page.

2.5.4.3 Validating Unencrypted Tokens
When the token is not encrypted, the resource server can validate the token signature. In the Java
code, you can use the step 2 of the sample that is mentioned in the preceding section.
Steps to Create an OAuth Client Application 33

https://www.netiq.com/documentation/access-manager-44/resources/JWTUtilityTool.zip
https://www.netiq.com/documentation/access-manager-44/resources/Readme.txt

34 Steps to Create an OAuth Client Application

3 3Customizing the Access Token

This section includes information about what you can perform as a resource server administrator
and what you can request the Access Manager administrator for customizing the access token.

 Section 3.1, “Adding Attributes to Token,” on page 35
 Section 3.2, “Creating Custom Resource Server,” on page 35
 Section 3.3, “Creating Custom OAuth2 Scope,” on page 35

3.1 Adding Attributes to Token
The user's LDAP attribute or virtual attributes (LDAP attribute or constant values) can be included in
the JWT access token. Talk to the Access Manager administrator to configure the access token to
include these attributes by using Access Manager Administration Console.

3.2 Creating Custom Resource Server
You can ask the Access Manager administrator to create a custom resource server in Access Manager
Administration Console to get more control on what crypto keys you require to use for encrypting
the token. Access Manager provides the option to encrypt the access token as per your requirement.

The access token can be encrypted by using any of the following options:

 Encrypt using the resource server key
 Encrypt using Access manager key
 No encryption (not recommended because it may cause security issues).

After the Access Manager administrator creates the custom resource server, you can specify the
resource server name in the token request for encrypting the access token using the encryption
mechanism configured for that resource server. For more details about the request parameter, see
Section 4.4, “Token Endpoint,” on page 45. This helps in avoiding the need for contacting Identity
Server’s TokenInfo or UserInfo endpoints for token validation or for claims.

Only the Access Manager administrator can register the resource server.

3.3 Creating Custom OAuth2 Scope
Creating custom OAuth2 scope can be done using Access Manager Administrator console or using
REST API. To create a scope by using REST API, you must have NAM_OAUTH2_ADMIN role. Contact
the Access Manager Administrator to create required scopes.
Customizing the Access Token 35

36 Customizing the Access Token

4 4Available Endpoints

 Section 4.1, “Registration Endpoint,” on page 37
 Section 4.2, “Metadata Endpoint,” on page 41
 Section 4.3, “Authorization Endpoint,” on page 43
 Section 4.4, “Token Endpoint,” on page 45
 Section 4.5, “TokenInfo Endpoint (Deprecated),” on page 47
 Section 4.6, “Token Introspect Endpoint,” on page 48
 Section 4.7, “UserInfo Endpoint,” on page 50
 Section 4.8, “Revocation Endpoint,” on page 51

4.1 Registration Endpoint
To register a client application, the HTTP method value must be POST. Identity Server uses the
following endpoint for registering a client application:

https://<Identity Server URL: Port Number>/nidp/oauth/nam/clients
The endpoint requires the following OAuth parameters for client registration or modification:

Parameter Required Description

client_name Required The Name of the client application

redirect_uris Required The redirection URI values used by
the client application

application_type Optional Web or native

response_types Optional The following list contains the
supported values for
response_types:

 code
 code token
 code id_token token
 id_token
 id_token token
 access_token
 refresh_token
Available Endpoints 37

grant_types

If you do not specify a grant type,
the default grant type is used. The
default value is
authorization_code.

Optional The following are the supported
values for grant_types:

 authorization_code
 implicit
 refresh_token
 password (resource owner

credentials)
 client_credentials
 saml2-bearer

alwaysIssueNewRefreshToken Optional Specify true as a value to issue a
new refresh token on every refresh
token request.

Parameter Required Description
38 Available Endpoints

tokenFormat

This parameter is applicable from
Access Manager 4.5 Service Pack 1
onwards.

Optional By default the token format is set
to default.

NOTE: When an administrator
changes the format, the changed
format will be seen only for the
newly issued tokens.

The following are the supported
token formats:

 default: The default format is
controlled by an
administrator. The
administrator can set the
default format globally for a
specific Identity Server
(Authorization server). If the
administrator has not set the
format, then JWT is the
default format. Whenever the
Access Manager
administrator changes the
token format globally for a
specific Identity Server, the
default format also changes
to the same for registered
client application.

 binary: The Binary option is
recommended only if you
have an existing client
application that cannot use
the jwt format because of the
browser restrictions for the
length of the parameter
values. This value will not
change when the Access
Manager administrator
changes the token format
globally for a specific Identity
Server.

 jwt: This is the recommended
option. The token format will
always be jwt even when the
administrator changes the
format in the global settings
of Identity Server
(authorization server).

authzCodeTTL Optional Specify the duration in minute,
after how long the authorization
code becomes invalid.

Parameter Required Description
Available Endpoints 39

accessTokenTTL Optional Specify the duration in minute,
after how long the Access token
and ID token become invalid.

refreshTokenTTL Optional Specify the duration in minute
after how long the Refresh token
becomes invalid.

corsdomains Optional If you want to allow access for
requests from only selected
domains. Specify the domain(s) as
JSON array.

For example: [“beem://
www.test.com”, “fb://
app.local.url”, “https://
namapp.com”]

logo_uri Optional Specify the URL of the logo that
you want to include in the consent
page.

For example: https://
client.example.org/logo.png

policy_uri Optional URL of the Relying Party Client’s
privacy policy.

For example: https://
client.example.org/privacypolicy

tos_uri Optional URL of the Relying Party's terms of
service.

For example: https://
client.example.org/terms

contacts Optional Email addresses of people related
to this client application

jwks_uri Optional Specify the URI of the JSON file
containing the json web keys.

This key set contains signing keys
that the relying party uses to
validate signatures from the
OpenID provider.

For example: https://
client.example.org/
my_public_keys.jwks

id_token_signed_response_alg Optional Specify the ID Token Signed
Response Algorithm. This
algorithm is required for signing
the ID token issued to the client

Parameter Required Description
40 Available Endpoints

4.2 Metadata Endpoint
The metadata endpoint exposes the basic services and options available at Identity Server for OAuth
2.0 and OpenID Connect. This also contains URLs for the endpoints. This endpoint is in the following
format:

https://<Identity Server URL: Port Number>/nidp/oauth/nam/.well-known/
openid-configuration

Invoking the endpoint URL responds with a JSON document that contains the following information:

 OAuth2.0 Endpoints
 ID Token supported algorithms
 JWKS Keys which can be used for verifying Access Token and ID token
 Client Registration Endpoint
 Scope and Resource Server registration Endpoint
 JSON Web Key Set Endpoint

Sample Metadata Endpoint:

{"issuer": "https://example.netiq.com/nidp/oauth/nam",
"authorization_endpoint": "https://am-test.lab.novell.com/nidp/oauth/nam/
authz",
"token_endpoint": "https://am-test.lab.novell.com/nidp/oauth/nam/token",
"userinfo_endpoint": "https://am-test.lab.novell.com/nidp/oauth/nam/
userinfo",
"revocation_endpoint": "https://am-test.lab.novell.com/nidp/oauth/nam/
revoke",
"introspection_endpoint": "https://am-test.lab.novell.com/nidp/oauth/v1/
nam/introspect",
"jwks_uri": "https://am-test.lab.novell.com/nidp/oauth/nam/keys",
"registration_endpoint": "https://am-test.lab.novell.com/nidp/oauth/nam/
clients",
"scopes_supported": [
"phone",
"urn:netiq.com:nam:scope:oauth:registration:read",
"address",
"urn:netiq.com:nam:scope:oauth:registration:full",
"email",
"profile",
"openid"
],
"response_types_supported": [
"token",

id_token_encrypted_response_alg Optional Specify the algorithm used to
encrypt the key

id_token_encrypted_response_en
c

Optional Specify the algorithm used to
encrypt the content.

Parameter Required Description
Available Endpoints 41

"id_token",
"code",
"token id_token",
"code token",
"code id_token token",
"code id_token",
"none"
],
"response_modes_supported": [
"query",
"fragment",
"form_post"
],
"grant_types_supported": [
"authorization_code",
"implicit",
"password",
"client_credentials",
"saml2-bearer",
"refresh_token"
],
"id_token_signing_alg_values_supported": [
"RS256"
],
"claims_supported": [
"phone_number_verified",
"phone_number",
"read",
"address",
"add",
"modify",
"delete",
"email_verified",
"email",
"website",
"birthdate",
"gender",
"profile",
"preferred_username",
"given_name",
"middle_name",
"locale",
"picture",
"zone_info",
"updated_at",
"nickname",
"name",
"family_name"
],
"code_challenge_methods_supported": [
"plain",
"S256"
],
"subject_types_supported": [
"public"
42 Available Endpoints

],
"token_endpoint_auth_methods_supported": [
"client_secret_post",
"client_secret_basic"
],
"revocation_endpoint_auth_methods_supported": [
"client_secret_post",
"client_secret_basic"
],
"introspection_endpoint_auth_methods_supported": [
"client_secret_post",
"client_secret_basic",
"bearer"
]
}

4.3 Authorization Endpoint
Authorization endpoint is always contacted through a browser. This endpoint requires that user has
existing browser session with the Identity Server. If no session exists at the time of request, the
authorization endpoint redirects the user to the login page. This endpoint is used when the client
uses the Authorization Code flow or Implicit flow.

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/nam/authz

Request method: Request method: GET and POST

NOTE: The basic authorization header is not supported for this endpoint.

4.3.1 Request Parameters
To get an authorization code, the client application should invoke a GET or a POST request to Identity
Server's authorization endpoint with the following request query string parameters:

Parameter Required Value Description

client_id Yes Client application ID, which is obtained at
the time of client application registration.

response_type Yes code/
code
id_token/
code
token/
code
id_token
token.

Set it to "code", to indicate Authorization
Code flow. OpenID Connect Hybrid flow is
also supported and the supported
response_type values are code, code
id_token, code token and code
id_token token.
Available Endpoints 43

redirect_uri Optional If provided, the value of this must exactly
match one of the registered URIs during
application registration. If not provided, the
browser will be redirected to any of the
registered redirect URIs registered during
application registration.

scope Yes openid List of scopes the application requires. It
should contain "openid". You can get all
"scopes_supported" at the authorization
server's OpenID Metadata Endpoint. Scope
values should be space separated %20 or +.

resourceServer Optional Specify the registered resource server name.
If this parameter is present, the
authorization server will use the respective
configured way to encrypt the access token.
For more information, see Section 3.2,
“Creating Custom Resource Server,” on
page 35.

state Recommended An opaque value used by the client to
maintain state between the request and
callback. The authorization server includes
this value when redirecting the user-agent
back to the client. The parameter should be
used to prevent cross- site forgery requests.

prompt Optional none

or

login

or

consent

The values can be "none", "login", or
"consent".

With none, no user interface will be shown
to user if user is not already authenticated. If
not authenticated, an error message in one
of "login_required", "interaction_required"
or other will be sent back to client
application. This is useful if client want to
detect whether the user has an existing
session with Identity Server or not and has
necessary consents.

max_age Optional 300 Maximum authentication age at Identity
Server in seconds. If the user has not logged
in within this elapsed time, the user will be
re-prompted for authentication.

acr_values Optional /name/
password
/uri

If client request contains acr_values
parameter, Identity Server maps the value to
configured contracts in Identity Server and
prompts the user with the contract if the
user is not already authenticated with the
contract. The contract is not sent in ID token
in this release.

Parameter Required Value Description
44 Available Endpoints

4.3.2 Response Values
The Identity Server responds an HTTP 302 redirect message to the requested redirect_uri in the
authorization request. If the request does not contain the redirect_uri parameter, Identity Server will
redirect to one of the registered redirect_uri.

4.4 Token Endpoint
Token endpoint is used directly by the client without involving the browser. Hence, it is possible to
get an access token offline when the user is not connected via a browser. This endpoint can issue an
access token when the client provides either a valid authorization code, SAML2 bearer profile for
authorization grant flow, resource owner credentials, or client credentials.

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/nam/token
Request method: POST

device_id Optional Specify device id that token to be associated
with device.

response_mode Optional query/
fragment/
form_post

Specify “response_mode” to receive
response parameters that are required for
your client applications. For more
information about this parameter and its
values, refer to Response Modes (https://
openid.net/specs/oauth-v2-multiple-
response-types-1_0.html#ResponseModes)
in OAuth 2.0 Multiple Response Type
Encoding Practices (https://openid.net/
specs/oauth-v2-multiple-response-types-
1_0.html).

NOTE: If response_mode parameter is
unavailable, default response_mode is used,
which is based on the response_type
parameter value as available in the Response
Modes (https://openid.net/specs/oauth-v2-
multiple-response-types-
1_0.html#ResponseModes) specs.

Parameter Required Value Description

Parameter Description

code An opaque binary token with variable length field. Application should not assume
the size of the code but allocate sufficient space for reading the code.

state Contains the state parameter sent in the authentication request above.
Available Endpoints 45

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html#ResponseModes
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html#ResponseModes
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html#ResponseModes

NOTE: The authentication is done by using client_id and client_secret in the request body
parameters (as mentioned in the preceding curl request), or send client credentials in basic
authorization header (as mentioned in RFC 6749 (https://tools.ietf.org/html/rfc6749?#section-
2.3.1)).

4.4.1 Request Parameters
The token request should have the following parameters:

4.4.2 Response Values

Parameter Required Description

resourceServer No Registered resource server name.If this parameter is
present, the authorization server will use the respective
configured way to encrypt the access token.

grant_type Yes authorization_code

Use 'urn:ietf:params:oauth:grant-type:saml2-bearer' as
value for this parameter.

assertion Yes (For SAML bearer grant) A single base64url encoded
SAML2.0 Assertion as value for this parameter.

client_id Yes Client ID of the registered client.

client_secret Optional Client Secret of the registered client.

It is optional for native application, for web application
secret is mandatory.

code Yes Code received in the Authorization code flow.

redirect_uri Yes This should be same as the one sent during the
authorization code request.

device_id Optional Specify device id that token to be associated with
device.

refresh_token Yes refresh_token that is obtained during authorization
grant, resource owner credentials.

scope Optional List of scopes the application requires. Scope values
should be separated using space (%20 or +).

Parameter Required Description

token_type Yes The type of the token. Authorization server
currently supports only Bearer type.
46 Available Endpoints

https://tools.ietf.org/html/rfc6749?#section-2.3.1

NOTE: Ensure that you do not use the Expect: 100-Continue header in the request when using a
multi-node IDP cluster setup. If the request contains this header you may experience HTTP 400 Bad
Request. If you are using CURL, use "-H 'Expect:'" or do not include IDP cookies.

4.5 TokenInfo Endpoint (Deprecated)
TokenInfo Endpoint is used for validating refresh token and access tokens issued in OAuth 2.0
Authorization flows. Clients can send the access token via Authorization Header. This endpoint
returns a JSON response stating whether the token is valid.

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/nam/
tokeninfo
Request method: GET and POST

NOTE: This endpoint is deprecated. It is recommended to use the Token Introspect endpoint, /
introspect. For information about /introspect, see Section 4.6, “Token Introspect Endpoint,”
on page 48.

4.5.1 Request Parameters
The request should contain the token in the Authorization header as follows:

Authorization: Bearer access_token

4.5.2 Response Parameters
The response to the TokenInfo endpoint will contain the following values in JSON format:

access_token Yes Access token that can be used to invoke resource
server APIs.

id_token Optional if scope
contains "OpenID"

When invoking authorization code request, if the
client has sent OpenID, this response object will
contain an ID Token.

scope Optional The list of scopes that user has authorized. This can
contain all the scopes the client requested or lesser.

state Optional if the "state" parameter was present in the client
authorization request, the same state value sends
in response.

Parameter Required Description

Parameter Required Description

expires_in Yes number of seconds the token is valid from now

user_id Yes user to whom the token was issued to
Available Endpoints 47

4.6 Token Introspect Endpoint
The token introspect endpoint is used for determining the active state and the meta-information of
an OAuth 2.0 token. Only an authorized protected resource can query an OAuth 2.0 authorization
server for token introspection.

This endpoint returns a JSON response, which is implemented based on RFC 7662 (https://
tools.ietf.org/html/rfc7662).

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/v1/nam/
introspect
Request method: POST

4.6.1 Request Headers
You must use any one of the following methods to authenticate a request:

 Authorization header with any of the following values:
 For client_secret_basic: Basic Base64Encode
of(<client_id>:<client_secret>)

 For bearer: Bearer <access_token_generated_using_client_credential_flow>
 client_secret_post (using client_id and client_secret in request body parameters)

The following is the priority list in which token introspect considers these methods:

1. client_secret_basic
2. bearer
3. client_secret_post

If you send a request to token introspect endpoint with client_secret_post (client_id and
client_secret in request body) and client_secret_basic (basic authorization header), the
endpoint validates the request based on the credentials that are provided through
client_secret_basic.

If values in client_secret_basic are invalid, the response displays 401 exception. The
endpoint does not consider client_id and client_secret in client_secret_post when
client_secret_basic is available in the request.

NOTE: If you provide more than one method for authentication, the introspect endpoint returns the
response based on the priority.

4.6.2 Request Parameters
The token introspect request should have the following parameters:

scope Yes list of scope values the token holds

Parameter Required Description
48 Available Endpoints

https://tools.ietf.org/html/rfc7662

4.6.3 Response Values
The response parameters are sent in JSON format with the following parameters:

Parameter Required Description

token Yes The token that requires to be
introspected. (only the access
tokens or the refresh tokens can be
introspected).

token_type_hint Optional The type of the token submitted
for introspection.

Parameter Required Description

active Yes A boolean value indicating
whether the mentioned token in
the introspection request is
currently active.

scope Optional A list of scopes associated with the
token.

client_id Optional The client identifier for the OAuth
2.0 client that requested this
token.

username Optional An identifier for the resource
owner who authorized the token.

token_type Optional The type of the token.

exp Optional The timestamp in seconds
indicating when the token will
expire

iat Optional The timestamp in seconds
indicating when the token was
issued.

nbf Optional The timestamp indicating till when
the token cannot be used.

sub Optional A machine-readable identifier of
the resource owner who
authorized the token.

aud Optional The intended audience of the
token.

iss Optional The issuer of the token.

jti Optional A string identifier of the token.
Available Endpoints 49

4.7 UserInfo Endpoint
UserInfo Endpoint is used for getting Resource Owner's claims. A client can send a request to
UserInfo endpoint with a valid access token and get the claims that are authorized by Resource
Owner to share.

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/nam/
userinfo
Request method: GET and POST

4.7.1 Request Parameters
The clients or resource servers can invoke the request to UserInfo Endpoint by including the access
token in the authorization header as given below:

Authorization: Bearer access_token

4.7.2 Response Values
The UserInfo endpoint returns the claims associated with the access token in a JSON object as given
in the response values.

4.7.3 Sample Request and Response
Request:

GET /nidp/oauth/nam/userinfo HTTP/1.1
User-Agent: curl/7.41.0
Host: www.idp.com:8443
 Accept: / Authorization:
 Bearer /wEBAA.............DSDG
Response:

Parameter Description

sub Unique ID identifying the subject. This will
be GUID of the user.

The other claims are included as values in JSON object if the
access token contains the necessary scope and user has
authorized the client to access the claim.

For example, if the client has requested "email" scope, the
UserInfo endpoint will return following value:

"email" : "alice@c.com" along with the "sub" field.
50 Available Endpoints

mailto:alice@c.com
mailto:alice@c.com

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
 Content-Type: application/json
Content-Length: 73 Date:
 Thu, 19 Mar 2018 16:14:52 GMT
{
 "sub": "6adb7ca411d5a14c94946adb7ca411d5",
 "email": "alice@a.com"
}

4.8 Revocation Endpoint
Revocation endpoint is used for revoking refresh tokens and its corresponding access token.

Endpoint URL: https://<Identity Server URL: Port Number>/nidp/oauth/nam/
revoke

Request method: POST

NOTE: The authentication is done by using client_id and client_secret in the request body
parameters (as mentioned in the preceding curl request), or send client credentials in basic
authorization header (as mentioned in RFC 6749 (https://tools.ietf.org/html/rfc6749?#section-
2.3.1)).

4.8.1 Request Parameters
The request should contain the refresh token and client credentials in HTTP request parameters as
mentioned in the following table:

4.8.2 Response Values
 The Identity Server responds with HTTP status code 200 OK if the token has been revoked

successfully or if the client submitted an invalid token.

Parameter Required Description

client_id Yes Client application ID that is obtained at the time of client
application registration.

client_secret Optional Client secret that is obtained at the time of client
application registration.

Client secret is optional for native application, for web
application it is mandatory.

token Yes refresh_token that is obtained during authorization
grant, resource owner credentials, client credentials
flow
Available Endpoints 51

https://tools.ietf.org/html/rfc6749?#section-2.3.1

 The error code unsupported_token_type is returned by the Identity Server when the given
token is not a refresh token.

 If the Identity Server responds with HTTP status code 503, the client must assume the token still
exists and may retry revoking the refresh token after a reasonable delay.
52 Available Endpoints

5 5Developer Resources

This chapter includes the information about the Access Manager OAuth Samples that is available at
the Developer Documentation page.

The OAuth Samples zip file includes the sample scripts that you can use as a quick trial to understand
the implementation flow.

NOTE: The use cases covered using the samples require completing tasks from the Access Manager
administrator and the client developer.

 Section 5.1, “APIs in Action,” on page 53
 Section 5.2, “Access Manager OAuth Playground,” on page 55

5.1 APIs in Action
You can use the OAuth samples file to try various APIs to solve the OAuth use cases. These samples
cover a wide range of functionalities:

 Auto configuration of Access Manager by creating scopes, resource server, and registering an
OAuth client

 Execute various OAuth flows and return the access token, refresh token, and ID token as per
requirement.

 Manage tokens by refreshing a token or revoking a token.

5.1.1 Try Now
You can use the sample scripts as a trial to understand how the OAuth flow works with Access
Manager.

5.1.1.1 Prerequisite
The Access Manager administrator must perform the following tasks to use the sample scripts:

1. Enable the OAuth protocol for Identity Server.
2. Enable NAM_OAUTH2_DEVELOPER and NAM_OAUTH2_ADMIN roles for developers.
3. Extend the user store schema and add LDAP attribute to store user's consent and refresh token

information.
4. Perform the following tasks:

Access Manager Administrator Tasks

1 Log in to the Access Manager Administration console.
2 Navigate to OAuth & OpenID Connect > Global Settings.
Developer Resources 53

https://www.netiq.com/documentation/access-manager-45-developer-documentation/resources/microfocus-am-oauth-samples.zip
https://www.netiq.com/documentation/access-manager-45-developer-documentation/

3 Specify the following values:
 Authorization Grant LDAP Attribute: The LDAP attribute that can be used for storing the

token information and the user consent.
 CORS Domain: Select Allow All
 Grant Type(s): Select all the options
 Token Type(s): Select all the options
 Signing Certificate: Add the signing certificate

4 Update Identity Server.

Client Developer Tasks

1 Download OAuth Samples from the Developer Documentation page.
2 From the OAuth Samples folder, go to try-now-scripts, then sampleScripts.
3 Open the config.txt file, then specify the values for the following parameters that are

mentioned within the System Settings section:
 username: OAuth developer username
 password: OAuth developer password
 user_email: OAuth developer email
 userstore: Name of the user store that is configured for the IDP cluster (check with NAM

administrator)
 user_dn: Full domain name such as, cn=admin, o=novell.

Change the domain as per requirement.
 idpurl: Identity server’s host and port
 scope_username: Non-developer user name.
 scope_password: Password for the user mentioned in scope_username.
 scope_email: Email of the user mentioned in scope_username.

4 Run the required script to see it in action or run sample Scripts.sh to run all the scripts as a
batch.

Sample Use Case

Authorization Flow

authorizationFlow-accessToken-using-
defaultresourceServer.sh

Retrieve access token by using the default resource
server that is configured in Access Manager.

authorizationFlow-accessToken-
usingRefreshtoken.sh

Retrieve access token by using refresh token.

authorizationFlow-accessToken-using-
resourceServerKey.sh

Retrieve access token that is encrypted using
resource server key.

authorizationFlow-accessToken-with-pkcePlain.sh Retrieve access token using pkce with the
code_challenge_method as plain.

authorizationFlow-accessToken-with-pkceS256.sh Retrieve access token using pkce with the
code_challenge_method as s256.
54 Developer Resources

https://www.netiq.com/documentation/access-manager-45-developer-documentation/resources/microfocus-am-oauth-samples.zip
https://www.netiq.com/documentation/access-manager-45-developer-documentation/resources/microfocus-am-oauth-samples.zip

5.2 Access Manager OAuth Playground
To try out the OAuth flows, see OpenID Connect with Access Manager Identity Server and OAuth 2.0
Playground.

authorizationFlow-revoke-refreshToken.sh Revoke the refresh token

authorizationFlow-revoke-refreshToken-using-
globalDeviceID.sh

Revoke the refresh token issued to a mobile device.

idtoken-using-authorizationFlow.sh Retrieve ID token

Client Credentials Flow

clientCredentialFlow-accessToken-using-
defaultResourceServer.sh

Retrieve access token by using the default resource
server that is configured in Access Manager.

clientCredentialFlow-accessToken-using-
resourceServerKey.sh

Retrieve access token encrypted using resource
server key.

Implicit Flow

idtoken-using-implicitFlow.sh Retrieve ID token

implicitFlow-accessToken-using-
defaultResourceServer.sh

Retrieve access token by using the default resource
server that is configured in Access Manager.

implicitFlow-accessToken-using-
resourceServerKey.sh

Retrieve access token encrypted using the resource
server key.

Resource Owner Flow

resourceOwnerFlow-accessToken-using-
defaultResourceServer.sh

Retrieve access token by using the default resource
server that is configured in Access Manager.

resourceOwnerFlow-accessToken-using-
resourceServerKey.sh

Retrieve access token encrypted using resource
server key.

resourceOwnerFlow-revoke-refreshToken.sh Revoke refresh token.

resourceOwnerFlow-revoke-refreshToken-using-
globalDeviceID.sh

Revoke refresh token using the device ID.

Manage and Validate

deleteOauthResourceServer.sh Delete the resource server configured in Access
Manager

manageOAuthScope.sh Manage the OAuth scopes

manageResourceServer.sh Manage the resource server configured in Access
manager.

accessToken-verification.sh Verify access token

Sample Use Case
Developer Resources 55

https://community.microfocus.com/cyberres/accessmanager/w/access_manager_tips/1106/openid-connect-with-the-nam-identity-server-and-oauth2-playground
https://community.microfocus.com/cyberres/accessmanager/w/access_manager_tips/1106/openid-connect-with-the-nam-identity-server-and-oauth2-playground

56 Developer Resources

	Access Manager 4.5 OAuth Application Developer Guide
	About This Guide
	Intended Audience
	Other Information in the Library

	1 Getting Started
	2 Steps to Create an OAuth Client Application
	2.1 Selecting the Authorization Grant Type
	2.2 Registering the OAuth Client Application
	2.2.1 Requirements
	2.2.2 Registering the OAuth Client Application

	2.3 Building an OAuth Client
	2.3.1 Authorization Code
	2.3.2 Authorization Code with PKCE
	2.3.3 Implicit
	2.3.4 Resource Owner
	2.3.5 Client Credentials
	2.3.6 Security Assertion Markup Language (SAML) 2.0 Bearer Grant

	2.4 Accessing Protected APIs
	2.4.1 Sample API request with access token using curl

	2.5 Managing Tokens
	2.5.1 Using Refresh Token
	2.5.2 Revoking Tokens
	2.5.3 Revoking Token Issued to a Device
	2.5.4 Validating a JWT Token

	3 Customizing the Access Token
	3.1 Adding Attributes to Token
	3.2 Creating Custom Resource Server
	3.3 Creating Custom OAuth2 Scope

	4 Available Endpoints
	4.1 Registration Endpoint
	4.2 Metadata Endpoint
	4.3 Authorization Endpoint
	4.3.1 Request Parameters
	4.3.2 Response Values

	4.4 Token Endpoint
	4.4.1 Request Parameters
	4.4.2 Response Values

	4.5 TokenInfo Endpoint (Deprecated)
	4.5.1 Request Parameters
	4.5.2 Response Parameters

	4.6 Token Introspect Endpoint
	4.6.1 Request Headers
	4.6.2 Request Parameters
	4.6.3 Response Values

	4.7 UserInfo Endpoint
	4.7.1 Request Parameters
	4.7.2 Response Values
	4.7.3 Sample Request and Response

	4.8 Revocation Endpoint
	4.8.1 Request Parameters
	4.8.2 Response Values

	5 Developer Resources
	5.1 APIs in Action
	5.1.1 Try Now

	5.2 Access Manager OAuth Playground

